원뿔, 삼각뿔, 사각뿔..등.. 모든 각뿔의 넓이 공식은 1/3을 기억하면 된다. 원기둥이나 삼각기둥 등 밑면의 단면적과 윗면의 단면적이 같은 입체도형의 부피는 밑면의 넓이 ×높이가 된다. 여기서 높이에 따라 밑면의 넓이가 일정하게 줄어들어 뿔(점)의 형태가 되는 도형의 넓이는 원래 기둥의 넓이의 1/3이 된다. 삼각뿔, 사각뿔도 마찬가지다. 원리 생각해보기 적분을 통해 증명을 할 수도 있지만, 여기서는 기하를 통해 원리를 파악해보자. 위 그림은 직육면체를 사각뿔과 나머지 입체도형으로 분해한 것이다. 4개의 동일한 모양의 사각뿔이 나오므로 총 5개의 사각뿔이 나온다. 5개의 사각뿔의 합이 총 입체도형인 직육면체의 부피이므로 등식을 세워서 계산해보자. 여기서 전제 되어야 할 것은 모든 각뿔들은 밑변의 넓이..