원에 내접하는 사각형의 대표적인 성질은 내각의 두 대각의 합이 180˚라는 것입니다. 이 성질을 증명하는 방법은 여러가지가 있으나, 여기서는 두 가지만 소개합니다. 두 번째 성질로는, 원에 내접하는 사각형의 한 내각의 크기는 맞은편 내각의 외각과 크기가 같다는 것입니다. 이 성질은 첫 번째 성질을 증명하면 자연스럽게 증면되므로 첫 번째 성질을 먼저 살펴보겠습니다. 두 대각의 합은 180˚ 증명 1> 위와 같이 원에 내접하는 사각형의 각 꼭지점에서 원의 중점을 이은 선분은 원의 반지름으로 모두 같으므로 4개의 이등변 삼각형으로 나눌 수 있습니다. 2(a+b+c+d) = 360˚ a+b+c+d = 180˚ 따라서 원에 내접하는 사각형의 두 대각의 합은 항상 180˚입니다. 증명 2> 위와 같이 붉은 선으로 ..